User's Manual

LG Programmable Logic Controller

G3F-AD3A
G4F-AD3A
G6F-AD2A

\ddots LG Industrial Systems

Safety Precautions

Be sure to read carefully this safety precaution given in data sheet and user's manual before operating the module and follow them.

The precautions explained here only apply to the G3F-AD3A, G4F-AD3A, and G6F-AD2A.
For safety precautions on the PLC system, please see the MASTER-K 200S/300S/1000S User's manual and the GLOFA GM3/4/6 User' s manual.

A precaution is given with a hazard alert triangular symbol to call your attention, and precautions are represented as follows according to the degree of hazard.

WARNING

If not provided with proper prevention, it can cause death or fatal injury or considerable loss of property.
$/ \mathrm{A}$ CAUTION

If not properly observed, it can cause a hazard situation to result in severe or slight injury or a loss of property.

However, a precaution followed with
 CAUTION can also result in serious conditions.

Both of two symbols indicate that an important content is mentioned, therefore, be sure to observe it.

Keep this manual handy for your quick reference in necessary.

Desian Precautions

CAUTION

Do not run I/O signal lines near to high voltage line or power line. Separate them as 100 mm or more as possible. Otherwise, noise can cause module malfunction.

Installation Precautions

Operate the PLC in the environment conditions given in the general specifications

If operation in other environment not specified, it can cause an electric shock, a fire, malfunction or damage or degradation of the module.

Make sure the module fixing projections is inserted into the module fixing hole and fixed.

Improper installation of the module can cause malfunction, disorder or falling.

Wirina Precautions

CAUTION

When grounding a FG terminal, be sure to provide class 3 grounding which is dedicated to the PLC.

Before the PLC wiring, be sure to check the rated voltage and terminal arrangement for the module and observe them correctly. If a different power, not of the rated voltage, is applied or wrong wiring is provided, it can cause a fire or disorder of the module.

Fasten the terminal screws firmly to the defined torque. If loosely fasten, it can cause short circuit, a fire or malfunction.

Be careful that any foreign matter like wire scraps should not enter into the module. It can cause a fire, disorder or malfunction.

Test Run and Maintenance Precautions

Do not contact the terminals while the power is applied. It can cause malfunction.

When cleaning or driving a terminal screw, perform them after the power has been turned off.

Do not perform works while the power is applied, which can cause disorder or malfunction.

Do not separate the module from the printed circuit board (PCB), or remodel the module. They can cause disorder, malfunction, damage of the module or a fire.

When mounting or dismounting the module, perform them after the power has been turned off.

Waste Disposal Precautions

CAUTION

[^0]
CONTENTS

Chapter 1. INTRODUCTION

1.1 Features 1-1
1.2 Terminology 1-2
1.2.1 Analog Value : A 1-2
1.2.2 Digital Value: D 1-2
1.3 Analog to Digital Conversion Characteristics 1-3
1.3.1 Voltage input 1-3
1.3.2 Current input 1-5
Chapter 2. SPECIFICATIONS
2.1 General Specifications 2-1
2.2 Performance Specifications 2-2
2.3 Names of Parts and Functions 2-4
2.3.1 G3F-AD3A 2-4
2.3.2 G4F-A D3A 2-5
2.3.3 G6F-AD2A 2-6
2.4 I/O Conversion Characteristics 2-7
2.4.1 Voltage Input Characteristics 2-8
2.4.2 Current Input Characteristics 2-10
2.4.3 Simultaneous Voltage and Current Input Characteristics 2-11
2.4.4 Analog input and Digital output characteristics 2-12
2.5 Processing Specification 2-13
2.5.1 Sampling processing A/D conversion system 2-13
2.5.2 Averaging processing A/D conversion system 2-13
Chapter 3. INSTALLATION AND WIRING
3.1 Installation 3-1
3.1.1 Installation Ambience 31
3.1.2 Handling Precautions 31
3.2 Wiring 3-2
3.2.1 Wiring Precautions 32
3.2.2 Wiring Examples 32
Chapter 4. FUNCTION BLOCK
4.1 Registration of the Function Block for the AID Conversion Module on the GMWIN 4-1
4.2 Function Block for Local $4-2$
4.2.1 Module Initialization 42
4.2.2 Module Reading - Array Type 44
4.2.3 Module Reading - Single Type 45
4.3 Remote Function Block 4.6
4.3.1 Module Initialization 46
4.3.2 Module Reading 48
4.4 Errors on Function Block 4-10
Chapter 5. GM PROGRAMMING
5.1 Programming for Distinction of A/D Conversion Value 5-1
5.2 Programming for Display of A/D Conversion Value and Error Code on BCD Display. 5-5
5.3 Programming for Loading the A/D Conversion Module on Remote I/O Station 5-8
Chapter 6. Buffer Memory
6.1 The configuration of buffer memory 6-1
6.1.1 G6F-AD2A 6-1
6.1.2 G3F-AD3A / G4F-AD3A 6-2
6.2 The contents and description of buffer memory 6-3
6.2.1 G6F-AD2A 6-3
6.2.2 G3F-AD3A / G4F-AD3A 6.8
Chapter 7. Buffer read/write instructions
7.1 Buffer read instructions 7-1
7.1.1 GET/GETP instruction 7-1
7.1.2 RGET instruction 7-3
7.2 Buffer write instructuins 7-6
7.2.1 PUT/PUTP instruction 7-6
7.2.2 RPUT instruction 7-8

Chapter 8. MK Programming

8.1 Basic Programming 8-1
8.1.1 G6F-AD2A 81
8.1.2 G3F-AD3A / G4F-AD3A 82
8.2 Example Programming 8-3
8.2.1 A program for comparision of A/D conversion value 83
8.2.2 Output the analog input value by 7 -segment display 85
8.2.3 An A/D module mounted on a remote station 87
Chapter 9. DIMENSIONS
9.1 G3F-AD3A Dimensions 9-1
9.2 G4F-AD3A Dimensions 9-2
9.3 G6F-AD2A Dimensions 9-3

1 Introduction

The G3F-AD3A, G4F-AD3A, and G6F-AD2A modul es are anal og-to-digital conversi on modul es for use with the GLOFA PLC GM/ $2 / 3 / 4 / 6$ series and MASTER-K PLC K200S/300S/ 1000S series. The GF-AD3A is used with GM1/2/3 series and K1000S series, G4F-AD3A is used with GM4 series and K300S series, and G6F-AD2A is used with GM6 series and K200S series. (Hereafter the GF-AD3A, G4F-AD3A, and G6FAD2A modul es are cal I ed as the A Dconver si on module)

The A/ D conver si on module is to convert an anal og input sig nal (vol tage or current) from ext er nal devi ces int o a 12-bit signed bi nary di git al val ue.

1.1 Features

1) Multi-channel anal og to di git al conver si on i s possi bl ew th a si ngl e A Dmodule.

- G6F-AD2A : 4 channel s
- G4F-AD3A and G3F-AD3A : 8 channel s

2) The sel ect of vol tage i nput or curr ent i nout i s possi bl eby channel of A Dmodul e.
3) The unlimited number of A Dmodul es can be mount ed on a base boar d.

The maxi mumnumber of AD modul es depends on t he power capacity of power supply module. (Incase of useto the GFF-AD2A withG6F-DA2V and G6F-DA2I, it is depends on the power capacity of the GN6-PAFB)

1.2 Terminology

1.2.1 Analog value : A

Analog val ue is a continuously changing val ue such as voltage, current, temper ature, speed pressure, flux, et c. Tem per at ure, for exam ple, i s cont i nuousl y changi ng accor di ng to the time. Because this temperature itself is not available for input of the PLG the tem per at ur e should be convert ed an anal og el ect rical signal by $t r$ ansducer. Nor eover, the conver ted anal og si gnal (volt age or current) has to be convert ed into a di gital val ue with t he A Dmodul e because t he PLCcan handl e onl y dig tal val ues.

Figure 1.1 Analog value

1.2.2 Digital value : D

Digital val ue is adiscrete dat a that are described in numbers such as $0,1,2$, ... In gener al, a bi nary code syst em that are consist of 0 (of f) and 1 (on) is used for expressing digital val ue. A so, BODor hexadeci mal val ues ar e used.

Because the CPU module of PLC can handle digital val ue onl y , the anal og si gnal from ext er nal devi ces shoul d be convert ed into anal og si gnal s with A Dmodule.

In the ot her hand, the di gital out put of CPU module should be converted into anal og signal to be used for ext er nal devi ces. The D'A modul e (digitatanalog converter) is used for corverting di gital val ues i int o anal og out put (vol tage or current).

Figure 1.2 Digital value

1.3 Analog-to-Digital conversion characteristics

1.3.1 Voltage input

The A D module convert st he anal og input fromexternal devi ces to the di git al val ue that can be handl ed by CPUmodul e.

When the anal og input is vol tage input, the K4F-AD3A and K7F-AD3A has two input r anges such as $1 \sim 5 \mathrm{VDC}$ and $0 \sim 10 \mathrm{VDC}$. The K3F-AD2A has threei nput range such as $1 \sim 5 \mathrm{VDC}, 0 \sim 10 \mathrm{VDC}$, and $10 \sim 10 \mathrm{VDC}$.

With al I anal og input range, the di gital out put is variedinther ange of $0 \sim 4000$. Ther ef ore, the resol ut i on of the A Dmodul ei s obt ai ned by foll owi ng equat i on;

$$
\text { Resolutionof } A / D \text { module }=\frac{\text { Maximuminput voltage }- \text { Minimuminput voltage }}{4000}
$$

1) $1 \sim 5 \mathrm{VDCr}$ ange

When the A D module oper at es with $1 \sim 5 V D C$ range, the 1 VDC analog input is conver ted to digital 0 , and the 5VDC analog i nput is converted into digit al out put 4000. Ther ef ore, the resol ut i on per 1 di git al val ue i s 0.001 VCC

Figure 1.3 A/D conversion characteristics (1 ~ 5VDC)
2) $0 \sim 10 \mathrm{VDCr}$ ange

Wen the A D module oper at es with $0 \sim 10 V D C$ range, the OVDC anal og input is conver ted to digital 0 , and the 10 VDC anal og input is convert ed into di gital out put 4000 . Ther ef ore, the resol ut i on per 1 di git al val ue i s $0.0025 \mathrm{~V} C$

Figure 1.4 A/D conversion characteristic (0 ~ 10VDC)
3) -10~10VDC range

When the AD modul e oper at es with-10~10VDCr ange, the 10VDC anal og input is conver ted to digital 0 , and the1 OVDC analog input is convert ed into di git al out put 4000 . Ther ef ore, the resol ut i on per 1 di git al val ue i s 0.005 VDC

Figure 1.5 A/D conversion characteristic (-10~10VDC)

1.3.2 Current input

When the analog input is current input, the AD conversi on module has only one input r anges such as $4 \sim 20 \mathrm{~mA}$

With al I anal oginput range, the di gital out put is variedinthe range of $0 \sim 4000$. Ther ef ore, t he resol ut i on of t he A Dmodul ei s obt ai ned by fol I ow ing equat i on;

$$
\text { Resolution of } A / D \text { module }=\frac{\text { Maximum input current }- \text { Minimum input current }}{4000}
$$

1) $4 \sim 20 \mathrm{~mA}$ r ange

When the A/D modul e oper at es with $4 \sim 20 \mathrm{~mA}$ range, the 4 mA anal og input is convert ed to di gital 0 , and the 20 m A anal og input is convert ed into di git al out put 4000. Ther efore, the resol uti on per 1 di gital val ue is 0.004 mA

Figure 1.6 A/D conversion characteristic (4 ~ 20mA)

Chapter 2. SPECIFICATIONS

2.1 General Specifications

Table 2.1 shows the general specifications of GLOFA GM series and MASTERK series.

Item	Specifications						Standard
Operating ambient temperature Storage ambient temperature				$55^{\circ} \mathrm{C}$ 70			
Operating ambient humidity	5~95\%RH, non-condensing						
Storage ambient Humidity	5 ~ 95\%RH, non-condensing						
Vibration	In case of occasional vibration					Sweep count	IEC 61131-2
	Frequency	Acceleration		Amplitud		10 times in each direction for X, Y, Z	
	$10 \leq f<57 \mathrm{~Hz}$	-		0.075 m			
	$57 \leq \mathrm{f} \leq 150 \mathrm{~Hz}$	9.8n/s ${ }^{2}$ (1G)		-			
	In case of continuosvibration						
	Frequency	Acceleration		Amplitud			
	$10 \leq f<57 \mathrm{~Hz}$	-		0.035 m			
	$57 \leq \mathrm{f} \leq 150 \mathrm{~Hz}$	4.9m/s $\mathrm{s}^{2}(0.5 \mathrm{G}$					
Shocks	$\begin{aligned} & \text { *Maximum shock acceleration: } 147 \mathrm{~m} / \mathrm{s}^{2}\{15 \mathrm{G}\} \\ & \text { *Duration time }: 11 \mathrm{~ms} \\ & \text { *Pulse waee: half sine wave pulse(} 3 \text { times in each of } \mathrm{X}, \mathrm{Y} \text { and } \mathrm{Z} \text { directions) } \end{aligned}$						IEC 61131-2
Noise immunity	Square wave impulse noise		$\pm 1,500 \mathrm{~V}$				LGIS Standard
	Electrostatic discharge		Voltage :4kV(contact discharge)				$\begin{array}{\|l\|} \hline \text { IEC 61131-2 } \\ \text { IEC1000-4-2 } \\ \hline \end{array}$
	Radiated electromagnetic field		$27 \sim 500 \mathrm{MHz}, 10 \mathrm{~V} / \mathrm{m}$				$\begin{array}{\|l\|} \hline \text { IEC 61131-2 } \\ \text { IEC1000-4-3 } \end{array}$
	$\begin{aligned} & \text { Fast transient } \\ & \& \\ & \text { burst noise } \end{aligned}$		Modules	All power modules	$\begin{gathered} \text { Digital I/Os } \\ (\text { Ue } 24 \mathrm{~V}) \end{gathered}$	Digital I/Os ($\mathrm{Ue}<24 \mathrm{~V}$) Analog I/Os communication IOs	$\begin{aligned} & \text { IEC 61131-2 } \\ & \text { IEC1000-4-4 } \end{aligned}$
			Voltage	2 kV	1 kV	0.25 kV	
Operating atmosphere	Free from corrosive gases and excessive dust						
Altitude for use	Up to 2,000m						
Pollution degree	2 or lower						
Cooling method	Selfcooling						

[Table 2.1] General specifications

REMARK

1) IEC(International Electrotechnical Commission)
: The international civilian organization which produces standards for electrical and electronics industry.
2) Pollution degree
: It indicates a standard of operating ambient pollution level.
The pollution degree 2 means the condition in which normally, only non-conductive pollution occurs.
Occasionally, however, a temporary conductivity caused by condensation shall be expected

2.2 Performance Specifications

Table 2-2 shows performance specifications of AID conversion module.

1) G3F-AD3A, G4F-AD3A

Items		Specifications	
		G3F-AD3A	G4F-AD3A
	I/O points	16 points	
Analog input	Voltage	$\begin{aligned} & \hline 1 \sim 5 \mathrm{VDC} \text { (input resistance } 600 \mathrm{k} \Omega \text {) } \\ & 0 \sim 10 \mathrm{VDC} \text { (input resistance } 600 \mathrm{k} \Omega \text {) } \end{aligned}$	
	Current	DC 4 ~ 20 mA (input resistance 250 ${ }^{\text {) }}$	
	Voltage/Current selection	Adjust input selection switch for each channel on side of module (ON : Current, OFF : Voltage) - Selection of voltage range by program	
Digital output		- 16 bit binary value	
Maximum resolution	$1 \sim 5 \mathrm{VDC}$	$1 \mathrm{mV}(1 / 4000)$	
	$0 \sim 10 \mathrm{VDC}$	$2.5 \mathrm{mV}(1 / 4000)$	
	DC 4~20mA	$4 \mu \mathrm{~A}(1 / 4000)$	
	verall Accuracy	$\pm 0.5 \%$ (accuracy to full scale)	
Max	conversion speed	$5.0 \mathrm{~ms} /$ channel	
	x. absolute input	Voltage : 15V, Current : 25 mA	
Number	of analog input point	8 channels/module	
	Isolation	Between input terminals and PLC: Photo coupler isolation (Between channels : Non-isolated)	
	minals connected	20-point terminal block	
Internal current consumption Weight		0.5 A 310	0.5 A 280

[Table 2.2] Performance Specifications

CAUTION

The manufacturer set value of A/D conversion module has been current input mode.
2) G6F-AD2A

[Table 2.2] Performance Specifications

2.3 Names of Parts and Functions

The names of parts and functions of the A/D conversion module are shown as below.

2.3.1 G3F-AD3A

2.3.2 G4F-AD3A

2.3.3 G6F-AD2A

2.4 I/O Conversion Characteristics

Input / Output (hereafter I/O) conversion characteristics are expressed with the angle of the line between
analog input(voltage and current) and matched digital value.
I/O conversion characteristics of the G3F-AD3A, G4F-AD3A are expressed with Fig 2.1, and I/O conversion characteristics of the G6F-AD2A is expressed with Fig 2.2

The voltage or current input for a channel is selected by analog input selection switch and the value of Offset / Gain can not be changed because it is fixed.

[Fig 2.1] I/O Conversion Characteristics

REMARK

1. The analog output value of over 4047 or -48 is fixed as 4047 or-48.
2. Keep the input voltage and current not to exceed +15 V and 25 mA .

[Fig 2.1] I/O Conversion Characteristics

REMARK

1. The analog output value of over 4047 or $-48(2047 \mathrm{or}-2048$) is fixed as 4047 or $-48(2047 \mathrm{or}-2048)$.
2. Keep the input voltage and current not to exceed +15 V and 25 mA .

2.4.1 Voltage Input Characteristics

1) G3F-AD3A, G4F-AD3A

For voltage input, the corresponding inputselection switch of each channel should be set to "off'.

- The voltage input range is selected in program.

Input selection switch has to be located at off.
(1)Voltage input range : DC $\sim \sim 10 \mathrm{~V}$

Digital output value for input voltage is shown as follows.

	Analog input voltage $($)							
	0.12	0	2.5	5	7.5	10	10.12	
Digital output value	-48	0	1000	2000	300	4000	4047	

(2)Voltage input range: DC1~5V

Digital output value for input voltage is shown as follows.

	Analog inputvoltage $($)							
	0.952	1	2	3	4	5	5.048	
Digita output value	-48	0	1000	2000	3000	4000	4047	

2) G6F-AD2A

For voltage input, the corresponding input is selected by selection switch and selected input voltage range is same through whole channels.

1) Voltage input range: $D C 1 \sim \square$

Digita output value for input voltage is shown as follows.

	Analog input voltage (M)							Input range selection switch
	0.952	1	2	3	4	5	5.048	
Digital output value	-48	0	1000	2000	300	4000	4047	
	-2048	2000	-1000	0	1000	2000	2047	

2) Voltage input range: DCO ~ 10

Digital output value for input voltage is shown as follows.

	Analog input voltage (M)							Input range selection switch
	-0.12	0	2.5	5	7.5	10	10.12	
Digital output value	$\begin{gathered} -48 \\ -2048 \end{gathered}$	$\begin{gathered} 0 \\ 2000 \end{gathered}$	$\begin{aligned} & 1000 \\ & -1000 \end{aligned}$	$\begin{gathered} 2000 \\ 0 \end{gathered}$	$\begin{aligned} & 3000 \\ & 1000 \end{aligned}$	$\begin{aligned} & 4000 \\ & 2000 \end{aligned}$	$\begin{aligned} & 4047 \\ & 2047 \end{aligned}$	

3) Voltage input range: $\mathrm{DC}-10 \sim 10$

Digital output value for input voltage is shown as follows.

	Analog input voltage (V)							Input range selection switch
	-10.24	-10	-5	0	5	10	10.24	
Digital output value	-48	0	1000	2000	3000	4000	4047	
	-2048	2000	-1000	0	1000	2000	2047	

24.2 Current Input Characteristics

1) G3F-AD3A, G4F-AD3A

For current input, the corresponding input selection switch of each channel should be set to " \square ".

- Digital output value for input current is shown as follows.

	Analog input current(mA)							
	3.808	4	8	12	16	20	20.192	
Digital outputvalue	.48	0	1000	2000	300	400	4047	

2) G6F-AD2A

Digital output value for input voltage is shown as follows.

	Analog input current (mA)							Input range selection
	3.808	4	8	12	16	20	20.192	
Digital outputvalue	$\begin{gathered} -48 \\ -2048 \end{gathered}$	$\begin{gathered} 0 \\ 2000 \end{gathered}$	$\begin{aligned} & 1000 \\ & -1000 \end{aligned}$	$\begin{gathered} 2000 \\ 0 \end{gathered}$	$\begin{aligned} & 3000 \\ & 1000 \end{aligned}$	$\begin{aligned} & 4000 \\ & 2000 \end{aligned}$	$\begin{aligned} & 4047 \\ & 2047 \end{aligned}$	

It has to be connected between V and I terminal to select current.

24.3 Simultaneous Voltage and Current Input Characteristics

1) G3F-AD3A, G4F-AD3A

For simultaneous voltage and current input, the input conversion switch of each channel is set to corresponding voltage and current range.
Ex) Vottage input range: 0 to $3 \quad$ Current input range: 4 to 7

- Digital output value for analog input is shown as follows..

		Analoginput							
Votage M	$0-10 \mathrm{~V}$	-0.12	0	2.5	5	7.5	10	10.12	
	$1 \sim 5 \mathrm{~V}$	0.952	1	2	3	4	5	5.048	
Current (mA)	$4 \sim 20 \mathrm{~mA}$	3.808	4	8	12	16	20	20.192	
Digita output value		-48	0	1000	2000	300	4000	4047	

2) G6F-AD2A

For simultaneous use of voltage and current input, the available input voltage rage is $0 \sim 5 \mathrm{VDC}$ only.
Digital output value for analog input is shown as follows.

	Analoginput						
Voltage DC1~5V	0.952	1	2	3	4	5	5.048
CurentDCA~20mA	3.808	4	8	12	16	20	20.192
Digita output value	-48	0	1000	2000	3000	4000	4047
	-2048	-2000	-1000	0	1000	2000	2047

Ex) channel for voltage : $0, \quad$ channel for current : 1

Input Rage Selection Switch	Wiring Example	
	Voltage Input(Channel " 0 ')	Current Input(Channel" $1^{1 \prime}$)

24.4 Analog input and Digital output characteristics

1) G3F-ADBA, GFFADBA

Analog input and Digital output
2) G6FAD2A

Digital output value								3) (4)				(2) (1)	
No	Input range	Digital output value	Resolution	Analog input value									
\aleph	DC-10~10V	$\begin{gathered} 0 \sim \\ 4000 \\ \text { or } \\ -2048 \\ \sim \\ \sim \\ 2047 \end{gathered}$	5 mV	$\begin{gathered} \hline 0.000 \\ \sim \\ 0.005 \end{gathered}$					$\begin{gathered} \hline \hline 0.005 \\ \sim \\ 0.010 \end{gathered}$				
3	DC 0~10V		2.5 mV		-00		$\begin{gathered} 5.0025 \\ \sim \\ 5.005 \end{gathered}$			$\begin{aligned} & .005 \\ & \sim \\ & .0075 \end{aligned}$		5.007 \sim 5.01	
\mathfrak{J}	DC 1~5V		1 mV	$\begin{gathered} 3.000 \\ \sim \\ 3.001 \end{gathered}$	$\begin{gathered} \hline 3.001 \\ \sim \\ 3.002 \end{gathered}$	$\begin{gathered} 3.002 \\ \sim \\ 3.003 \end{gathered}$	$\begin{gathered} 3.003 \\ \sim \\ \text { 3.004 } \end{gathered}$	$\begin{gathered} 3.004 \\ \sim \\ 3.005 \end{gathered}$	$\begin{gathered} 3.005 \\ \sim \\ 3.006 \end{gathered}$	$\begin{gathered} 3.006 \\ \sim \\ 3.007 \end{gathered}$	$\begin{gathered} 3.007 \\ \sim \\ 3.008 \end{gathered}$	$\begin{gathered} 3.008 \\ \sim \\ 3.009 \end{gathered}$	$\begin{gathered} 3.009 \\ \sim \\ 3.010 \end{gathered}$
R	DC 4~20 mA		$4 \mu \mathrm{~A}$	$\begin{aligned} & 12.000 \\ & \sim \\ & 12.004 \end{aligned}$	$\begin{gathered} 12.004 \\ \sim \\ 12.008 \end{gathered}$	$\begin{gathered} 12.008 \\ \sim \\ 12.012 \end{gathered}$	$\begin{gathered} 12.012 \\ \sim \\ 12.016 \\ \hline \end{gathered}$	$\begin{gathered} 12.016 \\ \sim \\ 12.020 \end{gathered}$	$\begin{gathered} 12.020 \\ \sim \\ 12.024 \end{gathered}$	$\begin{gathered} 12.024 \\ \sim \\ 12.028 \end{gathered}$	$\begin{gathered} 12.028 \\ \sim \\ 12.032 \end{gathered}$	$\begin{gathered} 12.032 \\ \sim \\ \\ 12.036 \end{gathered}$	$\begin{gathered} 12.036 \\ \sim \\ 12.040 \end{gathered}$

Analog input and digital output value

2.5 Processing specifications

2.5.1 Sampling processing A/D conversion system

The analog values input to the channels designated for sampling processing by the CPU are converted to digital output values one by one and the digital output values are stored in the buffer memory.

As the A/D module scans each channel, the value appearing at the instant is written to the buffer memory as a digital value. The timing of this sampling depends on the number of channels used, and may be found from the following expression.

Process time = Number of channels used \times Maximum conversion time (5 ms)
The process time when 4 channels is used, for example, will be $20 \mathrm{msec}=4 \times 5 \mathrm{~ms}$

2.5.2 Averaging processing A/D conversion system

The A/D module makes the A/D conversion for any channels to which averaging processing has been specified from the CPU. Using a pres et count, an average is calculated (excluding the maximum value and the minimum value) and stored to the buffer memory. The preset count can be set as 2 to 255 times.

The time in which the average value by this processing is stored in the buffer memory varies with the number of channels used.

Processing time $=$ Count setting \times No. of channels $\times 5 m s$ (Max conversion time)
The processing time when count value is 50 and 4 channels are used, for example, will be $50 \times$ $4 \times 5 \mathrm{~ms}=1000 \mathrm{~ms}$.

3 Installation and wiring

3.1 Installation

3.1.1 Installation ambiance

The A / D module has designed to have high reliability regardless of its installation ambiance. However, please be sure to check the following precautions for higher reliability and stability of system.

1) Ambiance requirements

Avoid installing the A / D module in following locations where;
(1) temperature may experience ambient drops or rising.
(It should stay within $0^{\circ} \mathrm{C} \sim 55^{\circ} \mathrm{C}$ or $32^{\circ} \mathrm{F} \sim 131^{\circ} \mathrm{F}$)
(2) condensation may occur due to abrupt temperature changes
(3) vibration and shock are directly transmitted to the PLC system.
(4) the PLC system is exposed to the direct rays of the sun.
(5) the PLC system is exposed to corrosive or inflammable gas.
(6) the PLC system is exposed to conductive powder, oil mist, salt, or organic solvent.
2) Installing and wiring
(1) During wiring or other work, do not allow any wire scraps to enter into the module.
(2) Install the module on location that is convenient for operation.
(3) Be sure that it is not located near high voltage equipment on the same panel.
(4) Be sure to install the module at least 50 mm away from a duct or other devices.
(5) Be sure to be grounded to locations that have good noise immunity.

3.1.2 Handling precautions

From unpacking to installation, be sure to check the following;
(1) Do not drop it off, and make sure that strong impacts should not be applied.
(2) Do not dismount printed circuit boards from the case. It can cause malfunctions of module.
(3) Be sure to disconnect electrical power before mounting / dismounting the module.

3.2 Wiring

3.2.1 Wiring precautions

(1) Separate AC and external input signal of A/D module wiring not to be affected by surge or induced noise in the AC.
(2) External wiring has to be at least AWG32 $\left(0.3 \mathrm{~mm}^{2}\right)$, and be selected in consideration of operating ambiance and/or allowable current.
(3) Separate wiring from device and/or substances generating intense heat, and oil not to make short-circuit which leads to damage and/or mis -operation.
(4) Be careful not to connect external power supply with wrong polarity.
(5) Separate external wiring sufficiently from high voltage and power supply cable not to cause induced noise or malfunction of module.

3.2.2 Wiring examples

1) G6F-AD2A
(1) Voltage input

(2) Current input

*1: Use a two-core twisted pair shielded cable
*2 : If noise is expected, ground the cable and FG terminal as shown in figure.
2) G3F-AD3A / G4F-AD3A
(1) Voltage input

(2) Current input

*1: Use a two-core twisted pair shielded cable
*2 : If noise is expected, ground the cable as shown in figure.

CHAPTER 4. FUNCTION BLOCK

This shows function block for A/D conversion module on the GMWIN.
A kind of function block is as follows.

No	G3F-AD3A		G4F-AD3A		G6F-AD2A		Function
	Local	Remote	Local	Remote	Local	Remote	
1	AD3INI	ADR3INI	AD3INI	ADR3INI	AD2INI	ADR62NI	Initalizing module
2	AD3ARD	ADR3RD	AD3ARD	ADR3RD	AD2ARD	ADR62RD	Reading A/D convertedvalue(array Type)
3	AD3RD	-	AD3RD	-	AD2RD	-	Reading A/D converted value(Single Type)

The function block type and functions of inputfouput parameters of G3F-AD3A and G4F-AD3A are same.

4.1 Registration of the Function Block for AID Conversion Module on the GMWIN

Function Block is inserted on the execution of the GMWIN according to following procedure.
Function block can be inserted only in the open condition of the Project.

4.2 Function Block for Local

4.2.1 Module Initialization

1) G3F-AD3A, G4F-AD3A

Module Initialization function block is used in a program with setting of A / D conversion module located base number, slot number of located module on base, specifying a channel enable, analog input data type and the information of average processing.

| Function
 block | I/O | Var iable | Data
 type | Descriptions |
| :--- | :--- | :--- | :--- | :--- | :--- |

REMARK

BOOL[8] and USINT[8] of data type means that the number of element is 8 , and also this means the whole number of channels and channel number.

2) G6F-AD2A

Module Initialization function block is used in a program with setting of A / D conversion module located base number, slot number of located module on base, specifying a channel enable, analog input data type and information of average processing.

Function block	1/0	Variable	Data type	Descriptions
	Input	REQ	BOOL	Function Block ExecutionRequest Area - The execution of function block initialization is requested in this area. - If the status of condition connected with this area is changed from low(0) to high(1), function block initialization for the module is executed.
		BASE	USINT	Base Location Number Area - The base No. on which A/D conversion module is mouned is written on this area. - Setting range : 0
		SLOT	USINT	Slot Location Number Area - The slot No. on which A/D conversion module is mounted is written on this area. - Setting range: 0 to 7
		CH	BOOL[4]	Available Channel Specification Area - Enabled channels are specified to 1 and disabled channels are specified to 0 .
		DATA TYPE	BOOL[4]	Digital Output Data Type Specification Area - 0 is for the range of $-48 \sim 4047$ - 1 is for the range of $-2048 \sim 2047$
		$\begin{gathered} \text { AVG } \\ \mathrm{EN} \end{gathered}$	BOOL[4]	Enable / Disable of Average processing -0 is for the sampling processing. - 1 is for the average processing forthe number of times.
		AVG NUM	USINT[4]	Set a constant of the average processing of the number of times. - Setting range : 2 ~ 255
	Ouput	DONE	BOOL	Function Block Execution Complete Area - When function block initialization is executed with no error, 1 is written and 1 is kept until next execution. When error occurs, 0 is written and operation come to stop.
		STAT	USINT	Error Code Display Area - When error occurs during function block initialization, the error code number is written.
		ACT	BOOL[4]	Channel Operation Display Area - The channel specified after executing the function block initialization with no error is right, 1 is written and, on the non-specified channel, 0 is written.

REMARK

BOOL[4] and USINT[4] of data type means that the number of element is 4, and also this means the whole number of channels and channel number.

4.2.2 Module Reading-Array Type
 1) G3F-AD3A, G4F-AD3A

Array type of function block for reading the module is performed for every channel in block and the specified channels are used to read output variable of data displayed from ADD conversion digital value.

Function block	I/O	Variable	Data type	Descriptions

REMARK

BOOL $[8]$ and USINT[8] of data type means that the number of element is 8 , and also this means the whole number of channels and channel number.

2) G6F-AD2A

Array type of function block for reading is performed for all channels in module and the specified
channel is used to read output variable of data displayed from A/D conversion digital value.

Function block	I/O	Variable	Data type	Descriptions

4.2.3 Module Reading - Single Type
 1) G3F-AD3A, G4F-AD3A

Single type of function block for reading the module is performed for only one channel and the specified channel is used to read output variable of data displayed from AD conversion digital value.

Function block	I/0	Variable	Data type	Descriptions
	Input	REQ	BOOL	Function Block Execution Request Area - The execution of function blockreading is requested in this area. - If the status to be connected with this area is satisfied on the program operation and input condition changes from $\operatorname{low}(0)$ to high(1), tunction block initialization for the module is executed.
$$		BASE	USINT	Base Module Location Number Area - The baseNo. on which A/D conversion module is mouned is written on this area. - Setting range: 0~3
SLOT DATA		SLOT	USINT	Slot Location Number Area - The slot No. on which A/D conversion module is mounted is written on this area. - Setting range: 0 to 7
ch		CH	USINT	Available Channel Specification Area - Enabled channels are specified to 1 and disabled channels are specified to 0 .
	output	DONE	BOOL	Function Block Execution Complete Area - When function block reading is executed with no error, 1 is written and until next execution, 1 is continuing. When error occurs, 0 is written and operation come tostop.
		STAT	USINT	Error Code Display Area - When error occurred during function block initialization, the error code number is written.
		DATA	INT	A/D Conversion Value Output Area Output data range : -47~4048

2) G6F-AD2A

Single type of function block for reading the module is performed for only one channel and the specified channel is used to read output variable of data displayed from AVD conversion digital value.

Function block	1/0	Variable	Data type	Descriptions
A2020	Input	REQ	BOOL	Function Block Execution Request Area - The execution of function blockreading is requested in this area. - If input condition is changed from low(0) to high(1), function block initialization for the module is executed.
$\begin{array}{cc} \text { REDRO } \\ \text { REQ } & \text { DOLE } \\ \text { BSSE } & \\ \text { STAT } \end{array}$		BASE	USINT	Base Module Location Number Area - The baseNo. on which A/D conversion module is mouned is written on this area. - Setting range :0
$\begin{array}{ll} \text { BASE } & \text { STAT } \\ \text { SLOT } & \text { DATA } \end{array}$		SLOT	USINT	Slot Location Number Area - The slot N o. on which A/D conversion module is mounted is written on this area. - Setting range: 0 to 7
CH		CH	BOOL[4]	Available Channel Specification Area Setting range : 0~3
	Ouput	DONE	BOOL	Function Block Execution Complete Area - When function block reading is executed with no error, 1 is written and 1 is kept until next execution. When error occurs, 0 is written and operation come to stop
		STAT	USINT	Error Code Display Area - When error occurs during function blockreading, the error code number is written. - Error code is referred to Manual 4.3.
		DATA	INT[4]	A/D Conversion Value Output Area - Output data range : - $48 \sim 4047$ or-2048 ~ 2047

4.3 Remote Function Block

4.3.1 Module Initialization

1) G3F-AD3A, G4F-AD3A

Module Initialization function block is a program for the use in setting the location number of the slot on which the communication module of A / D conversion module of the master station is mounted, the address number of communication module which a remote I/O station has, the base location number, and the slot location number, and specifying the an available channel enable, a data type for A/D conversion, and average process data.

Function block	1/0	Variable	Data type	Descriptions
	Input	REQ	BOOL	Function Block Execution Request Area onRising Edge. - The execution of write function block is requested in this area. - If the status to be connected with this area is satisfied on the program operation and input condition changes from low(0) to high(1), function block initialization for the module is executed.
$\overbrace{\text { REQ }}^{\text {ADR3INI }}$ NDR		$\begin{aligned} & \hline \mathrm{NET}_{-} \\ & \mathrm{NO} \end{aligned}$	USINT	The location number of the slot on which the transmission module of the master station is mounted. -Setting range: 0 to 7
$\begin{cases} & \\ \text { NEI_ } & \text { ERR } \\ \text { NO } & \\ - \text { STIN } & \text { STAT } \\ 0 & \\ - \text { BASE } & \text { ACT }\end{cases}$		ST_NO	USINT	Stationnumber of the communicationmodule which a remote I/O station has. - Setting range : 0 to 63
		BASE	USINT	Base Location Number Area - The base No. on which A/D conversion module is mounted is written on this area. - Setting range: 0 to 3
		SLOT	USINT	Slot Location Number Area - The slot N o. on which A/D conversion module is mouned is written on this area. - Setting range: 0 to 7
		CH	BOOL[8]	Available Channel Specification Area - Available channels are specified in this area. - Enabled channels are specified to 1 and disabled channels are specified to 0 .
		TYPE	BOOL[8]	Output Data Type Specification Area - Output digital data type for each ch annel is specified in this area. -0 is for the range of $1 \sim 5 \mathrm{VDC}$ and $\mathrm{DC} 4 \sim 20 \mathrm{~mA}$ -1 is for the range of $0 \sim 10 \mathrm{VDC}$
		$\begin{gathered} \text { AVG } \\ \mathrm{EN} \end{gathered}$	BOOL[8]	Average Process Enable Specification Area -1 is for the average processing. - 0 is for the sampling process.
		$\begin{aligned} & \text { AVG } \\ & \text { NUM } \end{aligned}$	USINT[8]	Set a constant of the average processing of the number of times. - Setting range : $2 \sim 255$
	Output	NDR	BOOL	When function block execution is completed with no error, 1 is written. During the scan which the execution condition has been made, 1 is continuing and at the next scan. 0 is written.
		ERR	BOOL	Error Data Display Area - When error occurs during function block initialization, 1 is written and the operation comes to stop. During the scan which the execution condition has been made, 1 is continuing and at the next scan, 0 is written.
		STAT	USINT	Error Code Display Area - When error occurs during function block initialization, the error code number is written.
		ACT	BOOL[8]	Channel Operation Display Area - The channel specified after executing the function block initialization with no error is right, 1 is written and, on the nor-specified channel, 0 is written.

REMARK

BOOL $[8]$ and USINT[8] of data type means that the number of element is 8 , and also this means the whole number of channels and channel number.

2) G6F-AD2A

Module Initialization function block is a program for the use in setting the location number of the slot on which the communication module of A / D conversion module of the master station is mounted, the address number of communication module which a remote I/O station has, the base location number, and the slot location number, and specifying the an available channel enable, a data type for A/D conversion, and average process data.

| Function
 block | I/O | Variable | Data
 type | Descriptions |
| :--- | :--- | :--- | :--- | :--- | :--- |

REMARK

BOOL[4] and USINT[4] of data type means that the number of element is 4 , and also this means the whole number of channels and channel number.

4.3.2 Module Reading
 1) G3F-AD3A, G4F-AD3A

Function block for reading the module is performed for every channel in block and the specified channels are used to read output variable of data displayed from AD conversion digital value.

REMARK

BOOL [8] and USINT[8] of data type means that the number of element is 8 , and also this means the whole number of channels and channel number.

2) G6F-AD2A

Function block for reading the module is performed for every channel in block and the specified channels are used b read output variable of data displayed from A/D conversion digital value.

Function block	1/0	Variable	Data type	Descriptions
ADRGRD	Input	REQ	BOOL	Function Block Execution Request Area - The execution of read function block is requested in this area. - If the status to be connected with this area is satisfied on the program operation and input condition changes from low(0) to high(1), function block reading for the module is executed.
		$\begin{aligned} & \text { NET_ } \\ & \text { NO } \end{aligned}$	USINT	The location number of the slot on which the communication module of the master station is mounted. - Setting range: 0 to 7
REQ NDI NET_- ERR NO STN STAT 0 BASE DATA SLOT CH		ST_NO	USINT	The station number of the communication module which a remote I/O station has. - Setting range : 0 to 63
		BASE	USINT	Base Module Location Number Area - The base No. on which A/D conversion module is mouned is written on this area. - Setting range : 0
		SLOT	USINT	Slot Location Number Area - The slot N . on which A/D conversion module is mounted is written on this area. - Setting range: 0 to 7
	Output	CH NDR	$\begin{aligned} & \mathrm{BOOL}[4] \\ & \mathrm{BOOL} \end{aligned}$	Available Channel Specification Area - Available channels are specified in this area. - Enabled channels are specified to 1 and disabled channels are specified to 0 . When function block execution is completed with no error, 1 is written. During the scan which the execution condition has been made, 1 is continuing and at the next scan. 0 is written.
		ERR	BOOL	Error Data Display Area - When error occurs during the execution of function block reading, 1 is written and the operation come s to stop. During the scan which the execution condition has been made, 1 is continuing and atthe next scan, 0 is written.
		STAT	USINT	Error Code Display Area - When error occurs during the execution of function block reading, the error code number is written.
		ACT	BOOL[4]	Channel Operation Display Area - The channel specified after executing the function block reading with no error is right, 1 is written and, on the non-specified channel, 0 is written.
		DATA	INT[4]	A/D Conversion Value Output Area - Data output range : -48~4047

REMARK

BOOL[4] and USINT[4] of data type means that the number of element is 4, and also this means the whole number of channels and channel number.

4.4 Errors on Function Block

This shows errors and resolutions in accordance with them

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{\[
\begin{aligned}
\& \text { STAT } \\
\& \text { No. }
\end{aligned}
\]} \& \multirow{3}{*}{\begin{tabular}{l}
Local \\
IRemote
\end{tabular}} \& \multirow{3}{*}{Descriptions} \& \multicolumn{3}{|c|}{Function block} \& \multirow{3}{*}{Resolutions} \\
\hline \& \& \& Initializa \& \multicolumn{2}{|c|}{Read} \& \\
\hline \& \& \& tion \& \begin{tabular}{l}
Array \\
type
\end{tabular} \& \[
\begin{gathered}
\hline \text { Single } \\
\text { type }
\end{gathered}
\] \& \\
\hline 0 \& \multirow{11}{*}{Local} \& Operating with no fault \& 0 \& O \& 0 \& - \\
\hline 1 \& \& The base location number is exceeding the proper setting range \& 0 \& 0 \& 0 \& \begin{tabular}{l}
Correct the number in accordance with the proper range \\
(See Section 4.2)
\end{tabular} \\
\hline 2 \& \& H/W error of the base \& 0 \& 0 \& 0 \& Contact the service station \\
\hline 3 \& \& The slot location number is exceeding the proper setting range \& 0 \& 0 \& 0 \& Set the right number to the slot loading the A/D conversion module \\
\hline 4 \& \& The A/D conversion module on the slot is empty \& 0 \& 0 \& 0 \& Load the A/D conversion module to the specified slot \\
\hline 5 \& \& The module loaded isn't the A/D module \& 0 \& 0 \& 0 \& Load the A/D conversion module to the specified slot \\
\hline 6 \& \& The channel number is exceeding the proper range \& - \& - \& 0 \& Specify the available channel correctly \\
\hline 7 \& \& H/W error of the A/D conversion module \& 0 \& 0 \& 0 \& Contact the service station \\
\hline 8 \& \& The A/D conversion module's shared memory error \& 0 \& 0 \& 0 \& Contact the service station \\
\hline 9 \& \& The available channels are not specified \& - \& 0 \& 0 \& Make a correct specification of the available channel on the initialize function block \\
\hline 17 \& \& Average number exceeding the proper range \& 0 \& - \& - \& Correct the value to the proper range (Number: 2 to 255) \\
\hline 128 \& Remote \& H/W error of the communication module for remote \& 0 \& 0 \& \& See the manual for the remote communication module \\
\hline 129
131
133 \& \& \begin{tabular}{l}
The base location number is exceeding the proper setting range \\
The slot location number is exceeding the proper setting range \\
The module loaded isn't the A/D module
\end{tabular} \& \begin{tabular}{l}
0 \\
0 \\
0
\end{tabular} \& \begin{tabular}{l}
0 \\
0 \\
0
\end{tabular} \& - \& \begin{tabular}{l}
Correct the number in accordance with the proper range \\
(See Section 4.3) \\
Set the right number to the slot mounting the A/D conversion module \\
Mount the A/D conversion module to the specified slot
\end{tabular} \\
\hline 135
136

137 \& \& | H/W error of the A/D conversion module |
| :--- |
| The A/D conversion module's shared memory error |
| The available channels are not specified | \& \[

$$
\begin{aligned}
& \mathrm{O} \\
& \mathrm{O}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
$$

\] \& \& | Contact the service station |
| :--- |
| Contact the service station |
| Make a correct specification of the available channel on the initializing function block |

\hline 145 \& \& Average number exceeding the proper range \& 0 \& - \& \& Correct the value to the proper range (Number:2 to 255)

\hline
\end{tabular}

Chapter 5. GM PROGRAMMING

5.1 Programming for Distinction of A/D Conversion Value

1) System Configuration

GM3-	GM3-	G3F-	G3Q-
PA1A	CPUA	AD3A	RY4A

2) Initial Settings

(1) Available channel enable : channel $0,2,3$
(2) Analog input: current input(DC $4 \sim 20 \mathrm{~mA})$
(3) Average processing setting : channel $2(100$ times), channel $3(50$ times $)$

3) Descriptions of the Program

(1) The digital value less than 2,000 of channel Oturns \%Q0.1.0 on.
(2) The digital value more than 3,600 of channel 2 turns $\% \mathrm{Q} 0.1 .1$ on.
(3) The digital value more than 2,000 or same, and less than 3,600 or same of channel 4 turns \%Q0.1.2 on.
(4) The digital value of the same as 2,800 of channel 4 turns \%Q0.1.3 on.

4) Programming Example

5) Specifying initial value of input/output variables on the program.(Specifying channels)

6) Input/output variables on Programming

Variable Name	Var_Kind	Data Type	(AT Address) (Intial Value)
AD_CH	: VAR	: ARRAY [0.7] OF BOOL	$:=\{1,0,1,0,1,0,0,0,0\}$
$A D_{-}$INI	: VAR	: FB instance	
AD_RD	: VAR	: FB instance	
AVG_EN	: VAR	: ARRAY [0.7] OF BOOL	$:=\{0,1,0,1,0,0,0,0\}$
AVG_NUM	: VAR	: ARRAY [0..7] OF USINT	$:=\{0,0,100,50,0,0,0,0\}$
DATA	: VAR	: ARRAY [0..7] OF INT	
DATATYPE	: VAR	: ARRAY [0.7] OF BOOL	$=\{0,0,0,0,0,0,0,0\}$
INI_ACT	:VAR	: ARRAY [0.7] OF BOOL	
INI_STAT	: VAR	: USINT	
RD_ACT	: VAR	: ARRAY [0..7] OF BOOL	
RD_STAT	: VAR	: USINT	
READY	: VAR	: BOOL	
START	: VAR	: BOOL	

5.2 Programming for Display of A/D Conversion Value and Error Code on BCD Display

1) System Configuration

2) Initial Settings

(1) Available channel enabled : channel 0 ,
(2) Analog input : current input(DC 4 to 20 mA)
(3) Average processing setting :10 times

3) Descriptions of the Program

(1) \% I0.0.0 turning On leads to the initial setting of A/D conversion module.
(2) \%I0.0.1 turning On leads to displaying A/D conversion value on the BCD display.(\%Q0.1.0 to \%Q0.1.15)
(3) \% IO.0.2 turning On leads to displaying error code of function block on the BCD display, (\%Q0.2.0 to \%Q0.2.7)

4) Programming

5) Inputloutput variables on the programming

Variable Name	Var Kind	Data Type	(AT Address) (Initial Value)
AD_CH	VAR	: ARRAY [0..7] OF BOOL	$=\{1,0,0,0,0,0,0,0\}$
AD_INI	:VAR	: FB Instance	
AD_RD	: VAR	FB Instance	
AVG_EN	: VAR	ARRAY [0..7] OF BOOL	$=\{1,0,0,0,0,0,0,0\}$
CHO_DATA	: VAR	: INT	
DATA	:VAR	DINT	
DATATYPE	: VAR	:ARRAY [0.7] OF BOOL	$=\{0,0,0,0,0,0,0,0\}$
INI_ACT	VAR	ARRAY [0..7] OF BOOL	
INI_STAT	: VAR	USINT	
AVG_NUM	VAR	: ARRAY [0..7] OF UINT	$=\{10,0,0,0,0,0,0,0\}$
RD_STAT	: VAR	USINT	
START	: VAR	: BOOL	

5.3 Programming for Loading the A/D Conversion Module on Remote

 IIO Station1) System Configuration

2) Initial Settings

(1) A/D conversion enabling channel: channel 0
(2) Conversion data range: DC $4-20 \mathrm{~mA}$
(3) Average processing setting: channel 0(setting value: 50 times)

3) Descriptions of the Program

(1)The digital value less than 2000 of channel 0 turns $\%$ Q0.1.0 on.
(2)The digital value more than 2000 or same, and less than 10,000 or same of channel 0 turns \%Q0.1.1 on.
(3)The digital value more than 3,000 or same, and less than 12,000 of channel 0 turns \%Q0.1.2 on.
(4)The digital value more than 4,000 or same of channel 0 turns \%Q0.1.3 on.

4) Programming example

5) Inputloutput variables used on the programming

Variable Name	Var Kind	Data Type	(AT Address) (Initial Value)
AD_CH	: VAR	: ARRAY [0..7] OF BOOL	$:=\{0,0,0,0,0,0,0,0\}$
AD_DATA	: VAR	ARRAY [0..7] OF INT	
AD_INI	:VAR	: FB Instance	
AD_RD	:VAR	FB Instance	
AVG_EN	VAR	: ARRAY [0..7] OF BOOL	$:=\{1,0,0,0,0,0,0,0\}$
AVG_SEL	: VAR	ARRAY [0.7] OF BOOL	$:=\{1,0,0,0,0,0,0,0\}$
INPUTTYPE	: VAR	:ARRAY [0..7] OF BOOL	$=\{0,0,0,0,0,0,0,0\}$
INI_ACT	:VAR	: ARRAY [0..7] OF BOOL	
INI_ERR	: VAR	BOOL	
INI_STAT	VAR	: USINT	
AVG_NUM	: VAR	ARRAY [0..7] OF UINT	$=\{50,0,0,0,0,0,0,0\}$
RD_STAT	: VAR	ARRAY [0..7] OF BOOL	
RD_ERR	:VAR	BOOL	
RD_STAT	VAR	USINT	
READY	: VAR	: BOOL	

6 Buffer memory

The A/D module has buffer memory used for data exchange with CPU module. This chapter describes the configuration and contents of buffer memory.

6.1 The configuration of buffer memory

6.1.1 G6F-AD2A

Address (decimal)	Name	Description	Default value	Remark
00	Channel enable	Enable / disable channel operation	h00	R/W ${ }^{1}$
01	Output data range	Assign the range of digital output value	h00	R/W
02	Average count processing enable	Enable / disable average count processing per each channel	h00	R/W
03	Avg. count of Ch0	Assign the count of Avg. processing of Ch0	h02	R/W
04	Avg. count of Ch1	Assign the count of Avg. processing of Ch1	h02	R/W
05	Avg. count of Ch2	Assign the count of Avg. processing of Ch2	h02	R/W
06	Avg. count of Ch3	Assign the count of Avg. processing of Ch3	h02	R/W
07	Data enable	Make enable the new setting of buffer 0 ~6	h00	R/W
08	Ch0 digital output value	Digital output value of channel 0	-	R
09	Ch1 digital output value	Digital output value of channel 1	-	R
10	Ch2 digital output value	Digital output value of channel 2	-	R
11	Ch3 digital output value	Digital output value of channel 3	-	R
12	Channel status	Indicate run/stop of each channel	R	
13	Ch0 error code	Shows error code when an error occurred on channel 0	-	R
14	Ch1 error code	Shows error code when an error occurred on channel 1 Shows error code when an error occurred on channel 2	-	R
15	Ch2 error code	Shows error code when an error occurred on channel 3	-	R
16	Ch3 error code			R

* All 16-bit data

${ }^{1}$ R/W	: Read and write are both available
${ }^{2}$ R	: Read only

6.1.2 G3F-AD3A / G4F-AD3A

The buffer memory of G3F-AD3A and G4F-AD3A has same configuration.

Address (decimal)	Name	Description	Default value	Remark
00	Channel enable	Enable / disable channel operation	h00	R/W
01	Input voltage / current type	Assign the type of analog input voltage / current	h00	R/W
02	Average count processing enable Avg. count of Ch0	Enable / disable average count processing per each channel Assign the count of Avg. processing of Ch0	h00	R/W
03	h02	R/W		
04	Avg. count of Ch1	Assign the count of Avg. processing of Ch1	h02	R/W
05	Avg. count of Ch2	Assign the count of Avg. processing of Ch2	h02	R/W
06	Avg. count of Ch3	Assign the count of Avg. processing of Ch3	h02	R/W
07	Avg. count of Ch4	Assign the count of Avg. processing of Ch4	h02	R/W
08	Avg. count of Ch5	Assign the count of Avg. processing of Ch5	h02	R/W
09	Avg. count of Ch6	Assign the count of Avg. processing of Ch6	h02	R/W
10	Avg. count of Ch7	Assign the count of Avg. processing of Ch7	h02	R/W
11	Data enable	Make enable the new setting of buffer 0~10	h00	R/W
12	Ch0 digital output value	Digital output value of channel 0	-	R
13	Ch1 digital output value	Digital output value of channel 1	-	R
14	Ch2 digital output value	Digital output value of channel 2	-	R
15	Ch3 digital output value	Digital output value of channel 3	-	R
16	Ch4 digital output value	Digital output value of channel 4	-	R
17	Ch5 digital output value	Digital output value of channel 5	-	R
18	Ch6 digital output value	Digital output value of channel 6	-	R
19	Ch7 digital output value	Digital output value of channel 7	R	R
20	Channel status	Indicate run/stop of each channel	R	R
21	Ch0 error code	Shows error code when an error occurred on channel 0	-	R
22	Ch1 error code	Shows error code when an error occurred on channel 1	-	R
24	Ch2 error code	Shows error code when an error occurred on channel 2	-	R
Ch7 error code channel 6 code when an error occurred				
Shows error code when an error occurred				
on channel 7				

* All 16-bit data

6.2 The Contents and description of buffer memory

6.2.1 G6F-AD2A

1) Channel enable (Address 00)

- When the power is on, all bits are set as 0 (off) and all channels are disabled.
- In order to enable a channel, set the corresponding bit as 1 (on). For example, turn on the bit 2 to enable the channel 2.
- Because the conversion time depends on the number of used channel, turning on just necessary channel can reduce A / D conversion time.

Example) To enable channel 1 and 2 :
Write h0006 (turn on bit 1 and 2) to buffer 00 , and sampling time is obtained as $2 \times 5 \mathrm{~ms}=10 \mathrm{~ms}$.
2) Output data range (Address 01)

- Only G6F-AD2A has the function of selecting the range of digital output data. (It is not available with G3F-AD3A and G4F-AD3A).
- Each channel can be set independently.
- Turn on the corresponding bit as ' 1 ' to set the output data range as $-2048 \sim 2047$. The default value is ' 0 ' $(-48 \sim 4047)$.

Chapter 6 Buffer memory

3) Average processing enable (Address 02)

- To use the average processing, set the corresponding bit as ' 1 ' .
- The default value is 0 (sampling processing).

Ignored
average processing enable 0 : sampling processing
1 : average processing
4) Averaging count (Address 03 ~ 06)

- Assign the number of count that is used for the calculation of average value.
- Each channel can be set with different values.
- If the channel is not designated as average processing in address 02, the setting of averaging count is ignored.

Address	Description
03	The number of averaging count of channel0.
04	The number of averaging count of channel 1.
05	The number of averaging count of channel 2.
06	The number of averaging count of channel 3.

5) Data enable (Address 07)

- By turning on the bit 0 of address 07 , the contents of address $00 \sim 06$ are validated.
- While the bit 0 of address 07 is off, the A / D module operates according to the previous value of address $00 \sim 06$ (channel enable, average processing enable, etc.) even if the contents of address $00 \sim 06$ is changed by CPU module.

6) Digital output value (Address 08 ~ 11)

- The digital value converted from analog input value is stored at this area.
- If an error occurs, the digital output value keeps the previous value.

Address	Description
08	The digital output value of channel 0
09	The digital output value of channel 1
10	The digital output value of channel 2
11	The digital output value of channel 3

7) Channel status (Address 12)

- Indicates a channel is operating or not by turning on/off the corresponding bit.

8) Error code (Address 13 ~ 16)

- Shows an error code when an error occurred.

Error code h00	Description No error
h11	The averaging count setting error

6.2.2 G3F-AD3A / G4F-AD3A

1) Channel enable (Address 00)

- When the power is on, all bits are set as 0 (off) and all channels aredisabled.
- In order to enable a channel, set the corresponding bit as 1 (on). For example, turn on the bit 2 to enable the channel 2.
- Because the conversion time depends on the number of used channel, turning on just necessary channel can reduce A/D conversion time.

Example) To enable channel 1, 2, and 3 for G4F-AD3A :
Write h000D (turn on bit 1, 2, and 3) to buffer 00, and sampling time is obtained as $3 \times 5 \mathrm{~ms}=15 \mathrm{~ms}$.
2) Input voltage/current type (Address 01)

- This function is available with G3F-AD3A and G4F-AD3A. With the G6F-AD2A, the input voltage/current type isn' t set by sequence program.
- Turn on the corresponding bit as' 1 ' to set the input voltage/current type as $0 \sim 10$ VDC.

The default value is ' 0 ' ($1 \sim 5 \mathrm{VDC}$ and DC4~20mA $)$.

- When use current input, be sure to set the corresponding bit as ' 0 . Otherwise, the module will not operate normally.

3) Average processing enable (Address 02)

- To use the average processing, set the corresponding bit as ' 1 ' .
- The default value is 0 (sampling processing).

4) Averaging count (Address 03 ~ 10)

- Assign the number of count that is used for the calculation of average value.
- Each channel can be set with different values.
- If the channel is not designated as average processing in address 02, the setting of averaging count is ignored.

Address	Description
03	The number of averaging count of channel 0.
04	The number of averaging count of channel 1.
05	The number of averaging count of channel 2.
06	The number of averaging count of channel 3.
07	The number of averaging count of channel 4.
08	The number of averaging count of channel 5.
09	The number of averaging count of channel 6.
10	The number of averaging count of channel 7.

5) Data enable (Address 11)

- By turning on the bit 0 of address 07 , the contents of address $00 \sim 06$ are validated.
- While the bit 0 of address 11 is off, the A/D module operates according to the previous value of address $00 \sim 10$ (channel enable, average processing enable, etc.) even if the contents of address $00 \sim 10$ is changed by CPU module.

6) Digital output value (Address 12 ~ 19)

- The digital value converted from analog input value is stored at this area.
- If an error occurs, the digital output value keeps the previous value.

Address	Description
12	The digital output value of channel 0
13	The digital output value of channel 1
14	The digital output value of channel 2
15	The digital output value of channel 3
16	The digital output value of channel 4
17	The digital output value of channel 5
18	The digital output value of channel 6
19	The digital output value of channel 7

7) Channel status (Address 20)

- Indicates a channel is operating or not by turning on/off the corresponding bit.

8) Error code (Address 21 ~ 28)

- Shows an error code when an error occurred.

Error code	Description
h00	No error
h11	The averaging count setting error

7 Buffer read/write instructions

7.1 Buffer read instructions

7.1.1 GET / GETP instruction

| GET, GETP | FUN(230)
 FUN(231) | GET
 GETP | Applicable CPU |
| :--- | :--- | :--- | :--- | :--- | | K200S |
| :--- |
| K300S |
| K1000S |

Instructions		Available devices											Steps	Flag		
		M	P	K	L	F	T	C	S	D	\#D	Integer		$\begin{aligned} & \text { Error } \\ & \text { (F110) } \end{aligned}$	Zero (F111)	Carry (F112)
$\begin{aligned} & \text { GET } \\ & \text { GETP } \end{aligned}$	n1											\bigcirc	9	O		
	S											\bigcirc				
	D	O	\bigcirc	O	O*		\bigcirc	\bigcirc		O	O					
	n2											0				

* Available only when do not use computer link module or data link module

1) Functions

- Reads the data of ' n 2 words, which start at the address specified as ' S ' of buffer memory inside the special module mounted at the slot ' $n 1$ ', and stores the data into the memory of CPU which begin with the device specified as 'D'.

- In the following cases, operation error occurs;
a) Special function module is not founded at the slot number specified at ' $n 1$ '
b) The value of ' $n 2$ is greater than 512 , or [$D+n 2$] is exceeds the range of specified device.
- Execution conditions

2) Program example

- Program that reads address 14, 15 of buffer memory of the A/D module (G4F-AD3A) mounted at the slot 3, and stores them to the D0014, D0015 of CPU module.

- Program that reads address 09, 10 of buffer memory of the A/D module (G6F-AD2A) mounted at the slot 3 , and stores them to the D0014, D0015 of CPU module.

7.1.2 RGET instructions

Instructions		Available devices											Steps	Flag		
		M	P	K	L	F	T	C	S	D	\#D	Integer		$\begin{aligned} & \hline \text { Error } \\ & \text { (F110) } \end{aligned}$	$\begin{aligned} & \text { Zero } \\ & \text { (F111) } \end{aligned}$	Carry (F112)
RGET	sl											\bigcirc	13	\bigcirc		
	st											0				
	D	\bigcirc	\bigcirc	\bigcirc	O*		\bigcirc	0		\bigcirc	0					
	S											\bigcirc				
	n									0		0				
	SS	0	0	\bigcirc	O*		0	0		0	0					

Operand setting

sl	Upper byte	Type of remote special function module	S	Start address of buffer memory of A / D module of remote station
	Lower byte	Slot number of Fnet module of self-station		
st	Upper byte	Slot number of remote special function module	n	Number of words to be read
	Lower byte	Station number of Fnet remote module		
D	Start address of destination device of selfstation		SS	Device at which the link status is stored

* Available only when do not use computer link module or data link module

1) Functions

- Reads the data of ' n 2 words, which starts at the address specified as ' S ' of buffer memory inside the special function module of remote station (station number \& slot number is specified as'st) through the Fnet communication module (the slot number is specified as'sl), and stores the data into devices which begin with the device specified as ' D' . Then stores the link status into the device specified as 'SS' of self-station.
[Remote station]

[Self station]

- Code of remote special function modules are as followings;

Module	Code
G3F-AD3A	h40
G4F-AD3A	hC0
G6F-AD2A	h02

(For the codes of other special function modules, please refer the user's manual of the related special function module)

- An operation error occurs when [$S+n 2-1$] or [$D+n 2-1$] is exceeds the range of specified device.
- Execution conditions

Input condition

2) Program example

- Program that reads 8 words, through the Fnet module mounted at the slot 03, from the address 11 of the buffer memory of the G3F-AD3A module mounted at the slot 01 of remote station h1D. Then, stores the read data to the 8 words which begin with D0300 of self-station. The link status will be stored at M020 of self-station.
[System configuration]

[Example program]

' $\boldsymbol{s l}$ ': upper byte \rightarrow the code of remote module is hC0
lower byte \rightarrow slot number of Fnet module of self station is h03
' $\mathbf{s t}$ ' : upper byte \rightarrow slot number of remote A / D module is h01
lower byte \rightarrow the station number of remote station is h1D

7.2 Buffer write instructions

7.2.1 PUT / PUTP instructions

PUT, PUTP	FUN(234)	PUT		
FUN(235)	PUTP		\quad	Applicable CPU
:---	:---		K200S	
:---				
K300S				
K1000S				

Instructions		Available devices											Steps	Flag		
		M	P	K	L	F	T	C	S	D	\#D	Integer		Error (F110)	$\begin{aligned} & \text { Zero } \\ & \text { (F111) } \end{aligned}$	Carry (F112)
$\begin{aligned} & \text { PUT } \\ & \text { PUTP } \end{aligned}$	n1											\bigcirc	9	O		
	S											\bigcirc				
	D	\bigcirc	\bigcirc	\bigcirc	O*		\bigcirc	\bigcirc		\bigcirc	O					
	n2											\bigcirc				

* Available only when do not use computer link module or data link module

1) Functions

Write the data of ' n 2 words, which start at the address specified as ' S , of CPU, and transfer the data into the block starting at the address specified as ' D ' of buffer memory inside the A/D module mounted at the slot number ' $n 1$ '.

- In the following cases, operation error occurs;
a) Special function module is not founded at the slot number specified at ' $n 1$ '
b) The value of ' $n 2$ is greater than 512 , or [$D+n 2$] is exceeds the range of specified device.
- Execution conditions

2) Program example

- Program that write 3 words of D0049~D0051 of CPU module to the address 02 ~ 04 of buffer memory of the A / D module mounted at the slot 3 .

7.2.2 RPUT instructions

| RPUT | FUN(233) | RPUT | K200S
 K300S
 K1000S |
| :--- | :--- | :--- | :--- | :--- |

Instructions		Available devices											Steps	Flag		
		M	P	K	L	F	T	C	S	D	\#D	Integer		$\begin{aligned} & \text { Error } \\ & \text { (F110) } \end{aligned}$	$\begin{aligned} & \text { Zero } \\ & \text { (F111) } \end{aligned}$	Carry (F112)
RPUT	sl											\bigcirc	13	O		
	st											\bigcirc				
	S											\bigcirc				
	D	O	O	\bigcirc	O*		\bigcirc	\bigcirc		\bigcirc	O					
	n									\bigcirc		\bigcirc				
	SS	\bigcirc	\bigcirc	\bigcirc	O*		\bigcirc	\bigcirc		\bigcirc	O					

Operand setting

sl	Upper byte	Type of remote special function module	D	Start address of buffer memory of A / D module of remote station
	Lower byte	Slot number of Fnet module of self-station		
st	Upper byte	Slot number of remote special function module	n	Number of words to be read
	Lower byte	Station number of Fnet remote module		
S	Start address of device at which source data is stored (self-station)		SS	Device at which the link status is stored

* Available only when do not use computer link module or data link module

1) Functions

- Write the data of ' n ' words which start at the device specified as ' S to the block which begin with the address specified as ' D ' of buffer memory inside the special function module of remote station. (station number \& slot number is specified as 'st) through the Fnet communication module. Then stores the link status into the device specified as 'SS of self-station.
[Remote station]

- Code of remote special function modules are as followings;

Module	Code
G3F-AD3A	h40
G4F-AD3A	hC0
G6F-AD2A	h02

(For the codes of other special function modules, please refer the user's manual of the related special function module)

- An operation error occurs when [$S+n 2-1$] or [$D+n 2-1$] is exceeds the range of specified device.
- Execution conditions

Input condition

2) Program example

- Program that write 10 words, through the Fnet module mounted at the slot 02, from the D0200 ~ D0209 of self station to the address 11~20 of the buffer memory of the G3FAD3A module mounted at the slot 02 of remote station h0E. The link status will be stored at M020 of self station.
[System configuration]

[Example program]

' $\boldsymbol{s l}$ ': upper byte \rightarrow the code of remote module is hC0
lower byte \rightarrow slot number of Fnet module of self station is h02
st' : upper byte \rightarrow slot number of remote A/D module is h02
lower byte \rightarrow the station number of remote station is h0E

Remarks

The structure of 'SS' (Link status) of RPUT/RGET instruction is as following;

Bit 0 : Turns on during 1 scan after the communication is completed normally.
Bit 1 : Turns on during 1 scan after a communication error is occurred.
Bit 2 ~ 7 : Not used
Bit 8 ~ 15 : When the bit 1 turns on, the corresponding error code is stored.

8 MK Programming

8.1 Basic programming

The following example program shows how to set the operation condition for buffer memory of A/D conversion module. In this example, assume that the A/D module is mounted on the slot 2 .

8.1.1 G6F-AD2A

8.1.2 G3F-AD3A / G4F-AD3A

8.2 Example programming

8.2.1 A program for comparison of A/D converted value

1) System configuration

2) Initial setting for A / D module

No	Item	Setting	Buffer memory address	Data to be written
1	Channel to be used	Ch $0,2,4$	0	h0015
2	Analog input type and range	DC4~20mA	1	h0000
3	Averaging processing enable	Ch 2,4	2	h0014
4	Averaging count	Ch2:100 times	5	h0064
		Ch $4: 50$ times	7	h0032
5	Validate setting		11	h0001

3) Description of program
(1) Turns on P0010 bit when the digital value of channel 0 is less than 2000
(2) Turns on P0011 bit when the digital value of channel 2 is greater than 3600
(3) Turns on P0012 bit when the digital value of channel 4 is in the range of $2000 \sim 3600$
(4) Turns on the P0013 bit when the digital value of channel 4 is 2800.
4) Programming

8.2.2 Output the analog input value by 7-segment display

1) System configuration

2) Initial setting for A / D module

No	Item	Setting	Buffer memory address	Data to be written
1	Channel to be used	Ch 0	0	h0001
2	Analog input type and range	DC4~20mA	1	h0000
3	Averaging processing enable	Ch 0	2	h0001
4	Averaging count	Ch $0: 10$ times	3	h000A
5	Validate setting		7	h0001

3) Description of program
(1) When the P0000 is on, initialize the A / D module.
(2) When the P0001 is on, read the digital value of channel 0 from buffer memory of A/D module and store it into the D0008.
(3) When the P0002 is on, output the contents of D0008 to the 7 -segment display.
) Programming

8.2.3 An A/D module mounted on a remote station

1) System configuration

Fnet communication module on self-station : slot 2
Fnet remote module of remote station : station number 01
A/D module of remote station : slot 0, remote code $=\mathrm{hCO}$
2) Initial setting of A / D module

No	Item	Setting	Buffer memory address	Data to be written
1	Channel to be used	Ch 0	0	h0001
2	Analog input type and range	$0 \sim 10$ VDC	1	h0001
3	Averaging processing enable	Ch 0	2	h0001
4	Averaging count	Ch $0: 10$ times	3	h000A
5	Validate setting		7	h0001

3) Description of program
(1) When the digital converted value of channel 0 of remote A / D module is less than 2000, turns on P0010 of self-station.
(2) When the digital converted value of channel 0 of remote A/D module is 2000~2999, turns on P0011 of selfstation.
(3) When the digital converted value of channel 0 of remote A/D module is $3000 \sim 3999$, turns on P0012 of selfstation.
(4) When the digital converted value of channel 0 of remote A/D module is 4000 or greater, turns on P0013 of selfstation.
4) Programming

9 Dimension

9.1 G3F-AD3A

Unit : mm

Chapter 9 Dimension

[^0]: When disposing the module, do it as anindustrial waste.

